Electronic properties of edge-functionalized zigzag graphene nanoribbons on SiO2 substrate.

نویسندگان

  • D M Zhang
  • Z Li
  • J F Zhong
  • L Miao
  • J J Jiang
چکیده

Based on first-principles calculations, electronic properties of edge-functionalized zigzag graphene nanoribbons (ZGNRs) on SiO(2) substrate are presented. Metallic or semiconducting properties of ZGNRs are revealed due to various interactions between edge-hydrogenated ZGNRs and different SiO(2)(0001) surfaces. Bivalent functional groups decorating ZGNRs serve as the bridge between active edges of ZGNRs and SiO(2). These functional groups stabilize ZGNRs on the substrate, as well as modify the edge states of ZGNRs and further affect their electronic properties. Bandgaps are opened owing to edge state destruction and distorted lattice in ZGNRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons

We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon’s length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum me...

متن کامل

Giant edge state splitting at atomically precise graphene zigzag edges

Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host e...

متن کامل

Enhanced Thermoelectric Figure of Merit in Edge Disordered Zigzag Graphene Nanoribbons

We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while being only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 22 26  شماره 

صفحات  -

تاریخ انتشار 2011